Comparison of respiratory motion suppression techniques for 4D flow MRI.
نویسندگان
چکیده
PURPOSE The purpose of this work was to assess the impact of respiratory motion and to compare methods for suppression of respiratory motion artifacts in 4D Flow MRI. METHODS A numerical 3D aorta phantom was designed based on an aorta velocity field obtained by computational fluid mechanics. Motion-distorted 4D Flow MRI measurements were simulated and several different motion-suppression techniques were evaluated: Gating with fixed acceptance window size, gating with different window sizes in inner and outer k-space, and k-space reordering. Additionally, different spatial resolutions were simulated. RESULTS Respiratory motion reduced the image quality. All motion-suppression techniques improved the data quality. Flow rate errors of up to 30% without gating could be reduced to less than 2.5% with the most successful motion suppression methods. Weighted gating and gating combined with k-space reordering were advantageous compared with conventional fixed-window gating. Spatial resolutions finer than the amount of accepted motion did not lead to improved results. CONCLUSION Respiratory motion affects 4D Flow MRI data. Several different motion suppression techniques exist that are capable of reducing the errors associated with respiratory motion. Spatial resolutions finer than the degree of accepted respiratory motion do not result in improved data quality. Magn Reson Med 78:1877-1882, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
منابع مشابه
Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging
Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...
متن کاملExtracting respiratory motion from 4D MRI using organ-wise registration
Nuclear Medicine (NM) imaging serves as a powerful diagnostic tool for imaging of biochemical and physiological processes in vivo. The degradation in spatial image resolution caused by the often irregular respiratory motion must be corrected to achieve high resolution imaging. In order perform motion correction more accurately, it is proposed that patient motion obtained from 4D MRI can be used...
متن کاملComparison of 4D Phase-Contrast MRI Flow Measurements to Computational Fluid Dynamics Simulations of Cerebrospinal Fluid Motion in the Cervical Spine
Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurement...
متن کاملDynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback
Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...
متن کاملInvestigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study
Background: in radiation treatment of moving targets located in thorax region of patient body, the delivered dose does not match with the planned treatment, resulting in some over and under dosage in the tumor volume, as a function of motion magnitude and frequency. Several efforts have been done to investigate the target motion effects on dose distribution in the target and surrounding normal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 78 5 شماره
صفحات -
تاریخ انتشار 2017